Telegram Group & Telegram Channel
🐍 Задача с подвохом: Декораторы и мутабельные ловушки

Условие:

Что выведет следующий код и почему?


def memoize(fn):
cache = {}
def wrapper(arg):
if arg in cache:
print("Из кэша")
return cache[arg]
else:
result = fn(arg)
cache[arg] = result
return result
return wrapper

@memoize
def add_to_list(val, lst=[]):
lst.append(val)
return lst

res1 = add_to_list(1)
res2 = add_to_list(2)
res3 = add_to_list(1)

print(res1)
print(res2)
print(res3)


Вопрос:
Что будет выведено? Где здесь двойной подвох?

🔍 Разбор:

На первый взгляд кажется, что:

1. add_to_list(1) вернёт [1]
2. add_to_list(2) вернёт [2]
3. add_to_list(1) снова вызовет функцию (или достанет из кэша)

Но тут два подвоха:

Подвох №1: изменяемый аргумент по умолчанию

Аргумент lst=[] создаётся один раз при определении функции. Все вызовы без передачи списка будут использовать один и тот же список.

Подвох №2: кэширование по ключу

Декоратор memoize кэширует результат по ключу arg. Но функция возвращает список, который изменяется при каждом вызове. Даже если кэш сработает, вы получите тот же объект списка, который менялся между вызовами!

🧮 Что реально произойдёт:

- `res1 = add_to_list(1)` → функция вызвана, список становится `[1]`
- `res2 = add_to_list(2)` → функция вызвана снова (новый аргумент), список становится `[1, 2]`
- `res3 = add_to_list(1)` → аргумент `1` есть в кэше, сработает ветка `print("Из кэша")` и вернётся **ссылку на тот же изменённый список**

🔢 **Вывод:**

```
[1, 2]
[1, 2]
Из кэша
[1, 2]
```

Все результаты указывают на один и тот же изменённый список.

💥 **Почему это важно:**

1️⃣ **Изменяемые аргументы по умолчанию** сохраняются между вызовами
2️⃣ **Кэширование мутабельных объектов** может привести к неожиданным результатам: при возврате списка вы возвращаете не "результат на момент вычисления", а ссылку на объект, который может измениться позже

🛡️ **Как исправить:**

1️⃣ Использовать `lst=None` и инициализировать внутри функции:
```python
def add_to_list(val, lst=None):
if lst is None:
lst = []
lst.append(val)
return lst
```

2️⃣ Если кэшировать мутабельные объекты, лучше возвращать **копию**:
```python
import copy
cache[arg] = copy.deepcopy(result)
```

**Вывод:**

Декораторы + мутабельные аргументы = ловушка даже для опытных разработчиков. Особенно, когда мутабельные объекты кэшируются и меняются за кулисами.


@pythonl



tg-me.com/pythonl/4798
Create:
Last Update:

🐍 Задача с подвохом: Декораторы и мутабельные ловушки

Условие:

Что выведет следующий код и почему?


def memoize(fn):
cache = {}
def wrapper(arg):
if arg in cache:
print("Из кэша")
return cache[arg]
else:
result = fn(arg)
cache[arg] = result
return result
return wrapper

@memoize
def add_to_list(val, lst=[]):
lst.append(val)
return lst

res1 = add_to_list(1)
res2 = add_to_list(2)
res3 = add_to_list(1)

print(res1)
print(res2)
print(res3)


Вопрос:
Что будет выведено? Где здесь двойной подвох?

🔍 Разбор:

На первый взгляд кажется, что:

1. add_to_list(1) вернёт [1]
2. add_to_list(2) вернёт [2]
3. add_to_list(1) снова вызовет функцию (или достанет из кэша)

Но тут два подвоха:

Подвох №1: изменяемый аргумент по умолчанию

Аргумент lst=[] создаётся один раз при определении функции. Все вызовы без передачи списка будут использовать один и тот же список.

Подвох №2: кэширование по ключу

Декоратор memoize кэширует результат по ключу arg. Но функция возвращает список, который изменяется при каждом вызове. Даже если кэш сработает, вы получите тот же объект списка, который менялся между вызовами!

🧮 Что реально произойдёт:

- `res1 = add_to_list(1)` → функция вызвана, список становится `[1]`
- `res2 = add_to_list(2)` → функция вызвана снова (новый аргумент), список становится `[1, 2]`
- `res3 = add_to_list(1)` → аргумент `1` есть в кэше, сработает ветка `print("Из кэша")` и вернётся **ссылку на тот же изменённый список**

🔢 **Вывод:**

```
[1, 2]
[1, 2]
Из кэша
[1, 2]
```

Все результаты указывают на один и тот же изменённый список.

💥 **Почему это важно:**

1️⃣ **Изменяемые аргументы по умолчанию** сохраняются между вызовами
2️⃣ **Кэширование мутабельных объектов** может привести к неожиданным результатам: при возврате списка вы возвращаете не "результат на момент вычисления", а ссылку на объект, который может измениться позже

🛡️ **Как исправить:**

1️⃣ Использовать `lst=None` и инициализировать внутри функции:
```python
def add_to_list(val, lst=None):
if lst is None:
lst = []
lst.append(val)
return lst
```

2️⃣ Если кэшировать мутабельные объекты, лучше возвращать **копию**:
```python
import copy
cache[arg] = copy.deepcopy(result)
```

**Вывод:**

Декораторы + мутабельные аргументы = ловушка даже для опытных разработчиков. Особенно, когда мутабельные объекты кэшируются и меняются за кулисами.


@pythonl

BY Python/ django


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/pythonl/4798

View MORE
Open in Telegram


Python django Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

Python django from jp


Telegram Python/ django
FROM USA